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Abstract 

Multiple myeloma (MM) is a hematologic cancer caused by a mature B cell neoplasm, or 

plasmacytoma, that infiltrates the skeleton at several sites.  The disease is characterized by 

uninhibited transformed plasma cell proliferation that disrupts skeletal homeostasis leading to 

decreased bone modeling and increased bone resorption.  Osteolytic lesions (OL) or voids left in 

the bone, remain long after the treatment of the cancer and indicate disease progression to 

myeloma bone disease (MBD).  Current combinatorial MM therapies inhibit malignant plasma 

cell proliferation, slow the progression towards MBD, and increase the mean five-year survival 

rate, but do little to improve osteoblastic function and restore skeletal homeostasis.  Conversely, 

several novel MBD treatments have been developed to heal OLs, including monoclonal 

antibodies that target receptor activator of nuclear factor kappa-B ligand (RANKL) and 

sclerostin.   

A functional in vitro three-dimensional (3D) microphysiological human MM bone model was 

developed to aid in the identification of improved combinatorial treatments that suppress plasma 

cell proliferation while healing osteolytic lesions.  Bone Marrow Stromal Cell-derived (BMSC) 

osteoblasts and Bone Marrow macrophage-derived osteoclasts maintained as a homeostatic 

coculture capable of bone formation and resorption form mineralized bone fragments.  The 

introduction of human plasmacytoma cell lines induce lesions in the Mini-bones decreasing the 

cumulative hydroxyapatite (HA) content while increasing resorption markers, like C-Terminal 

Telopeptides Type Collagen 1 (CTX-1) recapitulating physiological conditions of MBD.   3D 

myeloma disease-induced bone fragments treated with a combination of immunomodulatory and 

bone modifying agents had lower free CTX-1 and more HA present after twelve days of 
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exposure.  These alterations in bone integrity and resorption were dose-dependent and 

demonstrated the model’s potential to evaluate novel combinatorial therapies. 
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Introduction 

1.1 Bone Formation and Remodeling 

 

Osteogenesis or bone formation is a process that is controlled by local and systemic 

regulatory factors.  It occurs in three distinct phases:  synthesis of an extracellular organic matrix 

(osteoid), matrix mineralization, and remodeling comprised of resorption and reformation.  There 

are three cell types ultimately responsible for bone modeling and resorption.  Osteoblasts are 

responsible for bone matrix synthesis and mineralization [1].  They are derived from 

mesenchymal stem cells and are subject to local canonical Wnt signaling for migration, 

differentiation, proliferation, and survival.  Some osteoblasts encased by the matrix, in a chamber 

called a lacunae, differentiate into osteocytes.  Osteocytes support bone structure and metabolism 

by continued matrix production and mechanosensation.  The latter is supported by a system of 

canaliculi that connect a series of osteocytes and the Wnt signaling pathway. Osteoclasts, 

polykaryonic cells derived from monocytic fusion, migrate from the marrow to the bone surface 

where they are responsible for bone degradation during the resorptive phase of bone remodeling.     

Human cortical and trabecular/cancellous bone is formed through two different processes 

called endochondral and intramembranous ossification.  Although endochondral ossification 

occurs through a cartilage precursor and each process forms different bone of the skeleton, both 

require osteoblastic deposition of osteoid, the organic component of bone matrix that is 90-95% 

collagenous protein or ossein, noncollagenous proteins, and growth factors.  Ossified bone is 

comprised of roughly twenty to thirty percent osteoid, sixty to seventy percent hydroxyapatite, 

and ten percent water.  Hydroxyapatite (Ca10(PO4)6(OH)2), a natural form of calcium 

phosphate, mineralizes the osteoid and gives the bone rigidity.   
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 Human bones are maintained through a biological process, known as remodeling, that 

occurs in five stages activation, resorption, formation, mineralization, and quiescence.  The 

activation phase of the bone remodeling process is initiated through direct mechanical stress/loss 

of structural integrity, osteocyte apoptosis, or through hormonal signaling via estrogen and 

parathyroid hormone (PTH) secretion.  PTH binds its cognate receptor of bone lining 

preosteoblastic cells located in the cambium layer of the periosteum at the remodeling site.  This 

molecular signaling cascade activates protein kinases A and C and causes GPCR-mediated 

calcium release from the endoplasmic reticulum [2].  Downstream transcriptional factors 

ultimately lead to the secretion of osteoclast recruitment molecules like monocyte 

chemoattractant protein-1 (MCP-1) and cell-surface antigen A7 [3].  One of the ways osteocytes 

regulate the remodeling process is through the secretion of TGF-β, an osteoclastogenesis 

inhibitor.  The loss of viable osteocytes decreases local levels of TGF-β, promoting osteoclast 

differentiation and recruitment.  Cells of the periosteum work in conjunction with other 

osteogenic cells to form basic multicellular units (BMUs) that form a cellular canopy over the 

remodeling compartment [2].   

Macrophage Colony Stimulating Factor (M-CSF) binds the c-FMS receptor on Bone Marrow 

Macrophages (BMM) and initiates phosphorylation of tyrosine residues located in c-FMS’s 

cytoplasmic tail leading to activation of phosphatidylinositol 3-kinase (PI3K) and Akt.  These 

signaling cascades lead to enhanced proliferation and survival signaling, induce cellular fusion, 

and upregulates receptor activator of nuclear factor kappa B (RANK) expression [4].  When 

RANK ligand (RANKL) binds RANK, this receptor elicits TNF receptor-associated factor 

(TRAF) recruitment.  The TRAF6-RANK signaling complex combines with TGF-β activated 

kinase 1 (TAK1) and TAK-1 binding protein (TAB2) that activate downstream mitogen- 
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activated protein kinase (MAPK) signaling pathways including: nuclear factor kappa B (NF-κB), 

c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) that lead to 

upregulation genes that control osteoclast differentiation [4].   

Once osteoclasts localize to the remodeling compartment, they become part of the BMU and 

the resorptive phase begins.  Osteoclasts adhere to the bone surface through an actin-rich 

structure called a podosome.  Upon attachment osteoclasts polarize, form a tight seal, and acidify 

the bone surface through the secretion of hydrogen ions.  The acidic environment demineralizes 

and exposes the bones extracellular matrix (ECM) [5].   

       Osteoclasts also secrete a protease that catabolizes collagen, elastin, and gelatin called 

cathepsin K.  This protease denudes the remaining matrix and forms the resorption lacunae [6]. 

This proteolytic decomposition also liberates osteogenic signaling molecules, like transforming 

growth factor β (TGF-β) embedded in the matrix by osteoblasts during bone formation.  The entire 

resorption phase of bone remodeling takes approximately 3 weeks in humans [7].  

The reversal phase of bone remodeling, which takes approximately 1-2 weeks, is a transitional 

period. Resorption activity is halted while the bone microenvironment conditions become 

favorable for osteoblast differentiation, migration, and bone formation.  Three primary events mark 

the reversal phase of bone remodeling:  osteoclasts undergo apoptosis, peripheral macrophages 

clear the resorption zone and prime it for bone formation, and osteoblasts differentiate and localize 

to the denuded bone’s resorption site, Howship’s lacunae [5].    

The formation phase of bone remodeling is initiated through several signaling mechanisms.  

Canonical Wnt signaling plays an integral part from osteoblastogenesis, to proliferation and matrix 

formation, through the mineralization process.  R-spondin 2 (Rspo2) is a Wnt receptor agonist and 



www.manaraa.com

4 
 

positive autocrine regulator of osteoblastogenesis.  Rspo2 binding to a Leucine-Rich Repeat-

Containing G-Protein Coupled Receptor (LGR) expressed on the cell membrane causes an 

interaction with the coreceptor, Frizzled, which causes components of the destruction complex to 

relocate to the plasma membrane.   The destruction complex consists of glycogen synthase kinase 

3 (GSK-3), casein kinase 1 (CK1), the scaffolding protein Axin, the adenomatous polyposis coli 

(APC) protein, and the E3-ubiquitin ligase β-TrCP, which together phosphorylates β-catenin and 

elicits proteasomal degradation of the protein [8].  The LGR-Frizzled interaction dissociates APC 

from the destruction complex and inhibits GSK-3 phosphorylation of β-catenin.  The free β-catenin 

accumulates in the cytoplasm and translocates to the nucleus where it promotes expression of 

osteogenic genes that induce Bone Marrow Stromal Cells (BMSC), or mesenchymal stem cells, to 

differentiate into preosteoblasts.  Continued canonical Wnt signaling stimulation completes the 

differentiation process and promotes functionality in osteoblasts [9]. 

TGF-β family members like TGF-β and Bone Morphogenic Protein (BMP) play an integral 

role in bone formation through canonical Smad-dependent and independent signaling pathways.  

Osteoclasts liberate latent TGF-β stored in the ECM during the resorptive phase of bone 

remodeling.  The latent TGF-β becomes activated due to acidic pH of the bone remodeling 

compartment [10].  Active TGF-β binds type I and II TGF-β receptors (TβRI and TβRII) on the 

surface of BMSCs initiating osteoblastogenesis.  Once bound TβRII is bound by ligand it 

transphosphorylates TβRI and initiates S signaling.  Smad dependent signaling occurs when the 

phosphorylated R-Smads (rSmad2 or rSmad3) form a complex with Smad4.  This complex then 

translocates to the nucleus and interacts with transcription factors like RUNX2 to upregulate the 

expression of osteogenic target genes [11].  TGF-β also activates the non-Smad dependent TAK1 

signaling pathway during bone formation when ligand-bound PTH receptor forms a complex with 
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TβRII, facilitates internalization, and activates TAK1 [12].  TAK1 causes downstream 

phosphorylation and activation of the p38 mitogen-activated protein kinases (MAPK) pathways 

that converge at RUNX2 regulating expression of essential osteogenic genes [13].  Other anabolic 

factors, such as lactoferrin, enhance TGF-β receptor expression and contribute to BMSC 

osteoblastogenesis [14].      

The Wnt/β-catenin, TGF-β, and BMP signaling work in concert to promote BMSC 

differentiation into pre-osteoblasts and maturation into functional osteoblasts.  These mature 

osteoblasts localize to the denuded bone and secrete osteoid, the unmineralized organic portion of 

bone primarily composed of type I collagen, chondroitin sulfate, and osteocalcin [15].  The bone 

formation process takes several months to complete [16].  

As osteoblasts migrate to the remodeling site on the denuded bone they attach, secrete bone 

matrix proteins like type 1 collagen, osteopontin, and osteocalcin.  Osteoblasts also localize 

alkaline phosphatase (AP) on the apical side of their membrane to regulate phosphate production 

essential for mineralization [17].    As osteoblasts advance along the cement line, the site at which 

new bone is formed and osteoblasts and osteocytes interact through canaliculi, they group and 

form an osteon.  New bone is formed through cellular and molecular mechanisms within 

osteoblasts that include: alkaline phosphatase  hydrolysis of pyrophosphate to inorganic phosphate 

essential for HA crystal formation and the accumulation of calcium within matrix vesicles (Figure 

1).  When the accumulation of calcium and phosphate exceed the solubility point HA crystals form 

and extend into the extracellular space where the mineral is deposited in the collagen-rich ECM 

leading to ossification or formation of new bone [18].   The mineral formation equation is as 

follows: 
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6HPO4
2- + 2H2O + 10 Ca2+ 

  ͍ Ca10(PO4)6(OH)2 + 8H+ 

 

Figure 1.  Major Mechanism of Osteoblastic Transport and Mineralization.  Hydroxyapatite, 

a critical component in bone mineralization, is formed by polarized osteoblasts when bone alkaline 

phosphatase, found on the outer surface of membrane vesicles,  hydrolyzes calcium and inorganic 

phosphate.  The HA crystals form, grow, and eventually penetrate the membrane vesicles exposing 

them to the collagen-rich extracellular bone matrix where they are deposited.  The process  requires 

active and passive transport exemplified through acid uptake by CIC exchangers at the apical 

membrane and basolateral acid transcytosis through NHE exchangers [17]. 

1.2 Myeloma Bone Disease 

 

Multiple myeloma (MM), one of the most prevalent hematologic cancers in the United States 

[19], is a plasma cell cancer characterized by malignant bone infiltration, hypercalcemia, anemia, 

increased susceptibility to infection, and kidney failure.  Early stage MM is primarily 

asymptomatic and is typically identified serendipitously through laboratory diagnostic blood or 

imaging tests.   Osteolytic lesions (OLs), regions of decreased bone density or “softening,” are 

detected in over 80% of MM patients upon initial diagnosis [20].  These regions of poor bone 
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density arise from an imbalance in normal bone homeostasis which is brought on by MM and can 

lead to myeloma bone disease (MBD).   

MBD causes fatigue and constant bone pain that cannot be relieved with anti-

inflammatory agents or rest [21].  This persistent pain is often the impetus for the initial visit to a 

primary care physician that eventually leads to the official MM/MBD diagnosis.  The spine is the 

predominant site of OLs and pain is often induced through direct contact between the tumor and 

the nerves.  MBD-associated lesions also weaken bones, cause spinal cord compression, and 

increase incidents of pathologic fractures [22].  Although the precise mechanism of 

plasmacytoma-mediated bone remodeling disruption is not fully understood, normal skeletal 

homeostasis has been studied for decades. 

The mechanism by which MBD OLs are derived include the release of the 

aforementioned osteoclast stimulatory factors and osteoblast inhibitory factors (Figure 2).    The 

primary mechanism of osteoclast stimulation is through secretion of receptor activator of nuclear 

factor kappa-B ligand (RANKL) [23].  MM cells directly induce osteoclast activation and inhibit 

osteoblasts through secretion of several cytokines including:  decoy receptor 3 (DcR3), 

interleukin-3 (IL-3), macrophage inflammatory protein-1 alpha (MIP-1α), macrophage 

inflammatory protein-1 beta (MIP-1β), and tumor necrosis factor-alpha (TNF-α).  MIP-1α is a 

chemokine produced by MM cells in approximately 70% of patients and correlates with an 

extremely poor prognosis [24].  MIP-1α is known to potentiate both osteoclast formation and 

RANKL secretion [25].  TNF-α is a cytokine capable of eliciting osteoclast formation while 

suppressing osteoblast differentiation.  IL-3 is known to augment osteoclastogenesis by 

enhancing RANKL and MIP-1α function [23].  IL-3 is also elevated in the majority of MM 

patient’s bone marrow plasma samples.  MM cells also inhibit osteoblast function through 



www.manaraa.com

8 
 

secretion of factors like the Wnt inhibitor, Dickkopf-related protein 1 (DKK1), and secreted 

frizzled-related protein 2 (sFRP2) [26].  DKK1 blocks osteoblast proliferation and differentiation 

by sequestering the canonical Wnt signaling ligand in preosteoblasts [25].     Overall, MM OLs 

are known to release factors that promote osteolytic resorption of bone while preventing new 

osteoblast deposition. 

Plasmacytoma cells also inhibit osteoblastogenesis and new bone formation through 

aberrant expression of Wnt receptors that sequester Wnt agonists essential for osteogenic 

signaling [27].  MM cells also secrete sclerostin, a cysteine knot-containing protein, that 

activates caspase signaling and induces apoptosis in mature osteoblasts [28].  

   

 

Figure 2.  Molecular Signaling of Multiple Myeloma.  MM cells disrupt bone remodeling 

homeostasis through direct and indirect mechanisms that promote enhanced osteoclastic 

differentiation and bone resorption while inhibiting osteoblastogenesis and bone formation.  This 

occurs through secretion of a number of signaling factors, like cytokines and RANK ligand, and 

soluble proteins, like the Wnt inhibitor DDK-1 and the RANKL decoy receptor, osteoprotegerin 

(OPG) [29].   
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1.3 MM/MBD Therapeutic Intervention 

 According to the American Cancer Society, there are six different classes of drugs that 

are commonly used to treat MM:  chemotherapeutics, corticosteroids, immunomodulating 

agents, proteasome inhibitors, histone deacetylase inhibitors, and monoclonal antibodies.  

Chemotherapeutic agents nonspecifically destroy proliferating cells through several different 

molecular mechanisms.  Melphalan and cyclophosphamide are alkylating agents that chemically 

inhibit nucleic acid synthesis [30].  While Vincristine binds the mitotic spindle and inhibits 

microtubule formation [31].  Doxorubicin inhibits topoisomerase II progression, an enzyme that 

uncoils DNA during replication, halting cell division [32].  All these drugs elicit systemic 

cytotoxicity in MM patients but have adverse side effects like nausea, vomiting, and low blood 

cell counts and can cause permanent damage to organs. 

 Corticosteroids, like dexamethasone and prednisone, are synthetic steroids used to 

mitigate the effect of immune response on nontarget tissues by decreasing inflammation and 

swelling [33].  Corticosteroids alleviate some side effects caused by chemotherapeutics and have 

been reported to improve the effectiveness of some treatments.  Immunomodulating agents are 

thalidomide analogs, like lenalidomide and pomalidomide, that cause ligand-dependent 

degradation of B cell transcription factors necessary for cell survival and proliferation [34].  

They are quite effective at inhibiting plasma cell division, but they do not cure the disease.  

Proteasome inhibitors, like bortezomib and carfilzomib, block enzymatic degradation of 

eukaryotic proteins essential for cell growth and division [35].  Cancer cells have been reported 

to have higher proteasome activity.  Serious side effects, like nausea, vomiting, low blood cell 

counts, and neuropathy have been associated with several proteasome inhibitors.  Although this 

class of drugs was initially utilized in patients with refractory disease, they are now commonly 
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included in combinatorial treatment strategies.  Histone deacetylase (HDAC) inhibitors, like 

panibostat and vorinostat, affect gene regulation through interactions with chromosomal histones 

that wrap around chromatin and regulate the efficiency of transcription [36].  HDAC inhibitors 

were initially used to treat patients that relapsed after treatments with immunomodulating agents 

and proteasome inhibitors but are now incorporated into some combinatorial treatment regimes.  

The last class of drugs currently used to treat MM contains various monoclonal antibodies, like 

daratumumab and elotuzumab.  These antibodies target surface markers on neoplastic plasma 

cells and elicit a host immune response to the cancer [37].  Several new antibody-based 

treatments currently in the clinic focus on bispecific T cell engagement, antibody-drug 

conjugates, checkpoint inhibition, and chimeric antigen receptor T cell therapy.           

 

Figure 3.  MM Standard of Care.  The strategy behind the MM standard of care is a 

combinatorial drug regimen that includes IMiDs, proteasome inhibitors, corticosteroids, and 

chemotherapeutic agents [38].  Velcade (bortezomib), Revlimid (lenalidomide), and 

Dexamethasone are used in standard and intermediate risk patients.  Kyprolis (carfilzomib) is 

often the proteasome inhibitor of choice for high risk patients. Autologous Stem Cell Transplants 

(ASCT) is widely used in eligible patients regardless of MM risk stratification.  

A paper published in Mayo Clinic Proceedings 2016 by Rajkumar and Kumar detailed 

the most common therapies for treating newly diagnosed MM (Figure 3).   Common MBD 

treatments include combinations of the MM drugs and bone strengthening agents.  These agents 
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promote osteoblastogenesis and differentiation, decrease osteoclastogenesis, and induce 

apoptosis in osteoclasts.   Most drugs were developed primarily to treat osteoporosis but are 

currently being tested as novel therapies in MBD.    Bisphosphonates, like pamidronate and 

zoledronate, elicit Fas-mediated apoptosis through caspase 3/7 activation in mature osteoclasts 

[39].  This osteoclastic cell death reduces bone resorption, but bisphosphonate MBD treatment 

has been associated with adverse side effects such as osteonecrosis of the jaw [40].  Activin A 

inhibitors, like sotatercept, function by blocking the transcription of receptor activator of nuclear 

factor kappa-B (RANK) which is essential in osteoclast differentiation.  Elevated levels of 

Activin A have been found in myeloma patients [24] and use of Activin A inhibitors have been 

shown to induce bone formation and inhibit cancer-related bone damage in vivo [41].  

Teriparatide, a bioactive hormonal analog of para thyroid hormone (PTH), selectively activates 

osteoblasts.  PTH is the primary source of calcium and phosphate metabolism in the bone and 

kidney [42].  Teriparatide, a biosynthetic form of PTH, also inhibits sclerostin (SOST), a WNT 

inhibitor that targets LRP4/LRP5-6 and antagonizes canonical Wnt signaling by binding to the 

LRP5/6 receptor.   Teriparatide promotes osteoblast proliferation survival through PTH receptor 

signaling mentioned previously.  Antibodies, like denosumab and romosozumab, have been used 

successfully to treat osteoporosis and have great potential in treating MBD.  Denosumab blocks 

the RANK receptor on osteoclasts halting differentiation and subsequent bone resorption [43].  

Romosozumab is an anti-sclerostin antibody that has a similar effect as teriparatide while 

avoiding the potential serious side effects, including vertigo and tachycardia.   

Several new biotherapies have been developed to target pro-osteoclastic signaling molecules 

like RANKL, Denosumab.  Some physicians also incorporate osteoporosis-targeting agents, 

including bisphosphonates to treat MBD.  Bisphosphonates, like alendronate, inhibit farnesyl 
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pyrophosphate (FPP) synthase, disrupting the mevalonate pathway inhibiting the synthesis of 

isoprenoid intermediates culminating in osteoclast apoptosis [44].      

1.4 The 3D Microphysiological Model of 3D Myeloma Bone Disease 

Several recent publications utilize MM patient-derived BM aspirates to culture BMSCs in a 

3D manner [45, 46] for use in personalized medicine to test combinatorial treatment regimens.  

This proposed 3D model of human myeloma bone disease focuses on disruption of normal bone 

remodeling through induction of the myeloma disease state through the addition of 

plasmacytoma cell lines.  The normal homeostatic remodeling of the bone sets a quantifiable 

baseline of bone integrity.  Formation and subsequent treatment of osteolytic lesions are 

measurable parameters to assess the effectiveness of MBD treatments at restoring normal bone 

remodeling and skeletal repair.   

The 3D model of human myeloma bone disease described in this dissertation relies upon a 

co-culture of functional human osteoblasts and osteoclasts that engage in homeostatic bone 

formation and remodeling.  Osteogenic differentiation of human BMSCs elicits formation of 

mineralized layers containing calcium deposits [47].  Three-dimensional in vitro models of 

osteogenically differentiated BMSCs show increased alkaline phosphatase activity and 

mineralization [48].  Others have used collagen-rich Matrigel to develop a 3D model of bone in 

different scaffolds [49] and co-cultured osteoblasts and osteoclasts in 3D to simulate the bone 

microenvironment [50].   

This in vitro of model of normal homeostatic human bone remodeling was developed 

through prolonged culture of human BMSCs embedded in Matrigel, osteogenic differentiation 

into functional alkaline phosphatase-producing human osteoblasts, and subsequent 
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mineralization of ECM into a micro bone organoid (Figure 4).  Osteogenic differentiation and 

osteoblast functionality will be assessed through alkaline phosphatase staining, alizarin red 

staining, and microscopic analysis.  Mineralization and bone ossification will be quantified 

through an assay to measure HA content [51] and through confocal microscopy and micro-CT. 

Since osteoclasts have a shorter lifespan than osteoblasts, 2 to 3 weeks compared to 

approximately 3 months [52], BMMs are added to the culture after approximately three weeks of 

osteogenic differentiation.  BMM to osteoclast differentiation will be facilitated through the 

incorporation of RANKL and GM-CSF into the growth medium and cells will be grown for one 

month.  Osteoclast functionality will be measured through an ELISA assay designed to detect a 

biomarker of bone resorption, CTX-1 [53].  Osteoclasts will also be characterized for the 

presence of osteogenic transcripts by RT-PCR/Taqman [54] and microscopic analysis of cell 

fusion resulting in multinucleation [55].   

Once osteoblast and osteoclast functionality are confirmed, osteolytic lesions will be induced 

through the addition of human MM-derived plasmacytoma cell lines to the culture [56].   

Plasmacytomas intensify resorption through the secretion on osteoclastic activating factors like 

RANKL and osteopontin and suppresses bone formation through sequestration of Wnt agonist 

and secretion of DKK1 [27].  Prolonged osteoclastic function yields increased levels of TRAcP 

5b, liberates CTX-1 from the bone ECM, and decreases the amount of HA in the mineralized 

bone.  OLs will also be monitored through confocal microscopic analysis. 

Therapeutic intervention with commercially available MBD-targeting pharmaceutical agents 

will be used to treat the lesions with each respective drug and combinations of those included in 

the panel: lenalidomide, bortezomib, denosumab, and romosozumab.  HA content, the 
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aforementioned biomarkers of bone resorption, and microscopic analysis of the lesions will be 

measured before and after treatment. 

 

Figure 4.  3D In Vitro Model of Myeloma Bone Disease.  Matrigel embedded BMSCs and 

BMMs differentiate into osteoblasts and osteoclasts respectively and maintain skeletal 

homeostasis through balanced bone formation and resorption forming 3D normal bone fragments 

(3D-NBF).  Human MM-derived plasmacytoma cells disrupt the bone remodeling process by 

enhancing osteoclast and inhibiting osteoblast function eliciting a disease state in the bone 

fragments (3D-MBD). 
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Methods   

2.1  3D in vitro Model of Normal Bone-Like Fragments (3D-NBF)   

2.11 Primary human Bone Marrow Stromal/Mesenchymal Stem Cells (RoosterBio, cat# MSC 

030) were rapidly thawed at 37°C, washed with OsteoMax-XFTM (Millipore Sigma, cat# 

SCM121), and seeded at 25,000 cells per 20 µl cold MatrigelTM GFR (Corning, cat# 356231).  

The cell suspension was kept on ice until it was pipetted as 20 µl droplets/domes into respective 

wells of a 96-well plate (Corning, 353219).  The plate was incubated at 37°C for seven minutes 

to polymerize the gel and then 100 µl of OsteoMax-XFTM (Millipore Sigma, cat# SCM121) was 

carefully added to each well as not to disturb the integrity of the Matrigel droplet.  Plates were 

returned to the incubator and cultured at 37°C in the presence of 5% CO2 for twenty-one days, 

replacing 50% of the media with fresh OsteoMax-XFTM every two to three days.   

2.12 On Day 21 primary human osteoclast precursors (Lonza, cat# 2T-110), bone marrow 

macrophages, were rapidly thawed at 37°C, washed with OsteoMax-XFTM and resuspended in 

OsteoMax-XFTM supplemented with RANKL 120 ng/ml (Sigma-Aldrich, cat# GF091) and GM-

CSF 66 ng/ml (Sigma-Aldrich, cat# SRP6165-10UG), and seeded at 25,000 cells per well in 100 

µl medium.    Plates were returned to the incubator and cultured at 37°C in the presence of 5% 

CO2 for an additional ten days, replacing 50% of the media with fresh OsteoMax-XFTM 

supplemented with RANKL and GM-CSF every two to three days.   

2.13 Control cultures including: BMSCs grown in stem cell medium only (BMSC-), cell-free 

Matrigel cultured in the osteogenic differentiation medium (M+), HEK-293T cells in OsteoMax-

XFTM (HEK293+), and Caco-2 cells grown in OsteoMax-XFTM (Caco2+) were cultured under 

the same conditions for over 30 days.  The control samples were characterized simultaneously 

with the 3D-NBF samples.  
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2.2  3D in vitro Model of Human Myeloma-Diseased Bone 

A human myeloma bone disease model was created by co-culturing the normal 3D-NBF 

samples with four different human lymphoblast, plasmacytoma, or myeloma cell lines for 

fourteen days. MM.1S (ATCC, CRL-2974), NCI-H929 (ATCC, CRL-9068), U266B1 (ATCC, 

TIB-196), RPMI 8226 (ATCC, CCL-155) were initially seeded at 0, 7,500, 10,000, 15,000 and 

25,000 and at 50,000 cells per well in subsequent experiments.  The mineralized 3D-NBF 

samples were cultured in the presence of the cancer cell lines for at least twelve days to promote 

enhanced bone resorption and the formation of osteolytic lesions.   Subsequent experiments were 

conducted with RPMI 8226 cells seeded at 20,000 cells per well and remained in culture for at 

least twelve days.   

2.3  Characterization of 3D in vitro Bone Models 

2.31  Imaging/Microscopic Analysis of Mineralization 

Osteoblast differentiation and bone mineralization were monitored kinetically through 

microscopic analysis on an IncucyteTM S3 (Essen Bioscience, cat#4647) with a 4x objective.  

Images were analyzed with IncucyteTM S3 software.  Images were captured three times each day 

throughout the course of the entire osteogenic differentiation and mineralization process (30 

days).  

2.33  Phalloidin Staining 

Samples were fixed in 4% formaldehyde (Pierce™ 16% Formaldehyde (w/v), Methanol-

free Thermo Fisher Scientific, cat# 28906), stock was diluted in 1X DPBS, by removing media 

and washing each well with 1X Dulbecco’s Phosphate Buffered Saline (DPBS).  DPBS was 

aspirated and 100 µl of 4% formaldehyde was added to each well.  Plates were fixed at room 
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temperature for 30 minutes.  The 4% formaldehyde was aspirated and wells were washed three 

times with 1X DPBS.  200 µl per well of 1X Alexa FluorTM 488 Phalloidin (Thermo Fisher 

Scientific, cat# A12379) and diamidino-2-phenylindole DAPI) (Thermo Fisher Scientific, 

cat#62248) was added to each well and plates were incubated at room temperature for 30 

minutes.  The staining solution was removed and wells were washed three times with 1X DPBS.  

Samples were stored in 300 µl 1x DPBS.  Images were captured on a fluorescent microscope 

(Nikon Eclipse Ti). 

2.34  Alkaline phosphatase (AP) staining 

A wash buffer consisting of 0.05% Tween 20 (Sigma-Aldrich, cat# P9416) in 1X DPBS       

(with calcium and magnesium) (Thermo Fisher Scientific, cat#14040117) was made and used 

throughout the staining process.  The AP substrate solution was prepared by dissolving a 

BCIP®/NBT tablet (Sigma-Aldrich, cat#B5655) in 10 ml distilled water (the solution was stored 

in the dark and used within two hours of preparation).  Alkaline phosphatase staining was 

performed on 4% formaldehyde briefly-fixed, less than two minutes, bone and cell samples to 

retain AP activity post fixation.  Samples were gently, yet thoroughly, washed twice immediately 

after fixation.  Solutions were carefully aspirated as not to disturb the cell/bone samples.  The AP 

substrate solution was added at 100 µl per well and plates were covered and incubated in the 

dark for ten minutes at room temperature.  After incubation the plates were washed three times 

as previously described and samples were stored in 1X DPBS.  Plates were immediately 

analyzed through light microscopy (Nikon Eclipse Ti) and images were captured.   

2.35  Alizarin Red Staining 
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The spent medium was removed from each well and plates were washed twice with 200 

ul 1X PBS.  Samples were fixed in 4% formaldehyde for 30 minutes at room temperature. 

Fixative was removed and wells were washed three times with deionized water.  Alizarin Red 

staining reagent (Millipore Sigma, cat#TMS-008-C) was added at 1X 40 mM concentration at 

100 µl/well and plate was shaken gently for thirty minutes at room temperature.  Alizarin red 

staining reagent was removed and plates were washed three times with deionized water.  Plates 

were immediately analyzed through light microscopy (Nikon Eclipse Ti) and images were 

captured.  

2.36  RT-PCR/TaqmanTM Human Osteogenic and WNT signaling Pathway Array Plates 

RNA samples were extracted from undifferentiated RoosterBio BMSCs, primary human    

osteoblasts isolated from femoral trabecular bone tissue from the knee or hip joint region  

PromoCell, cat# C12720), and the 3D-NBF and 3D-MBD samples with QIAGEN’s RNeasy 

(cat# 74134) using the protocol provided by the manufacturer.  Quantity and purity of the  

extracted RNA samples was measured with a NanoDrop™ 2000 spectrophotometer.  The RNA  

as converted to cDNA with Thermo Fisher’s High-Capacity cDNA Reverse Transcription Kit 

(cat# 4368814) using the manufacturer’s thermo cycler settings recommended for RT.  The 

resulting cDNA concentration and purity was measured with a NanoDrop™ 2000 

spectrophotometer.  The cDNA samples were mixed with TaqMan® Fast Advanced Master Mix 

(cat# 4444557), the reaction solution was added to the prepared TaqMan® Gene Expression 

Assays 96‑well Standard (0.2‑mL) TaqMan® Array plates (cat# 4418741 and 4414100), and the 
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plates were run on a ViiA 7 Real-Time PCR system (Thermo Fisher). 

2.37  Hydroxyapatite Content 

Lonza’s OsteoImage™ Mineralization assay was used to assess sample HA content.  Spent 

medium was carefully removed from each well and saved for the CTX-1 ELISA assay.  The 

wells were gently washed once with 1X DPBS  and samples were fixed in 4% formaldehyde as 

previously described.  After fixation, all samples were washed twice with 1X OsteoImage wash 

buffer and appropriately diluted Staining Reagent was added to each well as per the 

manufacturer’s instructions.  Plates were covered and incubated in the dark at room temperature 

for 30 minutes.  After staining, the samples were washed three times with 1X OsteoImage Wash 

Buffer, leaving the buffer in the wells for five minutes per wash.  After the final wash plates 

were read on a fluorescent plate reader (Biotek’s Synergy H4) with excitation and emission set at 

492/520 as recommended in the OsteoImage protocol.  Plates were also viewed via fluorescent 

microscope (Nikon Eclipse Ti). 

Data was processed in Excel and mean relative fluorescent values were transferred to 

GraphPad Prism 8 where dose response curves were generated using nonlinear regression curve 

fit with log (agonist or inhibitor) vs response -variable slope (four parameter). 

2.38  Fourier Transfer Infrared Spectroscopy and Micro-CT 

3D-NBF samples were fixed as previously described and maintained in 1X D-PBS.  Prior 

to FTIR analysis the D-PBS was removed and samples were transferred to aluminum foil and 

dried in a lab oven at 45°C for 2 hours.  The dried 3D-NBFs were made into a fine powder with 

a mortar and pestle and run on a Shimadzu IRSpirit.  Hydroxyapatite powder (Sigma 

cat#702153) was run as an experimental control.  



www.manaraa.com

20 
 

Fixed bone samples were samples were scanned at 90 kV, 100 µA and 9 µm voxel size using 

a Bruker Skyscan 1275 scanner with 1 mm aluminum filter. The images were reconstructed into  

a 3-D volume using NRecon (Bruker Corp., Billerica, MA). 

2.39  Type I Collagen C-telopeptide (CTX-I) ELISA Assay  

A CTX-1 ELISA assay (Chondrex, cat#6033) was run on all the spent media collected 

from the normal and MBD in vitro bone samples.  Plates were prepared according to the 

manufacturer’s instructions; capture antibody was added and plates were incubated overnight at 

4°C.  The next day a premixed solution consisting of 75 µl of each sample or standard or 

Solution B (blank) was added to 75 ul biotinylated CTX-1 was made and 100 ul of the mixture 

was added to the 100 µl capture antibody already in the well.  Plates were covered and incubated 

for two hours at room temperature.  Plates were washed three times with 1X wash buffer, 

including inverting and blotting them on clean absorbent towels after each wash.  A streptavidin 

peroxidase solution was added to the empty wells at 100 µl/well and plates were covered and 

incubated for thirty minutes at room temperature.   Plates were washed three times with 1X wash 

buffer, including inverting and blotting them on clean absorbent towels after each wash.  Wells 

were not allowed to dry out between each step.  A  3,3′,5,5′-Tetramethylbenzidine (TMB), 

peroxidase substrate, solution was added at 100 µl/well and plates were covered and incubated 

for twenty-five minutes at room temperature.  A stop solution, consisting of  2N sulfuric acid 

was added to each well at 50 µl/well.  Plates were read on a multi-mode plate 

reader/spectrophotometer (Biotek’s Synergy H4) and the optical density (OD) values at 450 nM 

were captured.  The resulting data were processed in Excel and sample CTX-1 content was 

quantified by comparing the sample and standards’ OD450 values and back calculating sample 
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CTX-1.  Dose response curves for samples derived from the respective therapeutic interventions 

were generated in GraphPad Prism 8 as previously described.       

2.40  Therapeutic Intervention 

The 3D-MBD samples were treated the following therapeutic agents: lenalidomide 

(Millipore Sigma, cat#901558), alendronate sodium (Millipore Sigma, cat# 126855), Anti-

Sclerostin Antibody, clone 7B6.1 (Millipore Sigma, cat# MABS445), Anti-RANKL Antibody, 

clone 6A12.1 (Millipore Sigma, cat# MABS1696).  Stock concentrations were made using 

manufacturer’s instructions and all agents were administered at 2X concentration in the 

Complete Bone Medium supplemented with 0.2% DMSO added to an equal volume of medium.  

On days 4 and 8, media was removed from each well and replaced with Complete Bone Medium 

supplemented with 0.1% DMSO and each respective compound at the relevant concentration.  

On day 12, the spent media was collected from each well for use in the CTX-1 ELISA assay and 

samples were analyzed via OsteoImage Mineralization as previously described.   

2.50 Statistical Analyses  

2.51  Analysis of TaqmanTM/RT-PCR Data 

The resulting data were processed, mean Ct was calculated, normalized to GAPDH, and 2-

ΔΔCt values were generated, in Excel and relative quantification (RQ) heat maps were created in 

GraphPad Prism 8.  Fold changes were determined by comparing RQ values for different 

samples/conditions.  

2.52  Analysis of CTX-1 in Media from Complete Medium, Normal 3D Bone, and 3D-MBD 
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An ANOVA analysis of the three data sets was performed using GraphPad Prism 8.0 

software and included p-values derived from Brown-Forsythe and Bartlett’s test. 

2.53  Analysis of OsteoImage  and CTX-1 ELISA Data from Treated and Untreated 3D-MBD 

Samples 

OsteoImage Assay data was reported as relative fluorescence units (RFU) 

excitation/emission wavelengths (492/520).  CTX-1 content was back calculated from the 

standard curve provided with ELISA kit.  Untreated diseased bone (negative) and normal bone 

(positive) controls were used to gauge the effectiveness of the therapeutic intervention on the 

bone samples.  All data were processed in GraphPad Prism 8.0 and dose response curves were 

generated using nonlinear regression curve fit with log (agonist or inhibitor) vs response -

variable slope (four parameter).  Multiple t-tests comparing untreated 3D-MBD to various 

treatments on 3D-MBD was performed using the two-stage linear step-up procedure of 

Benjamini, Krieger and Yekutieli, with Q = 1%.  Each row was analyzed individually, without 

assuming a consistent SD. 
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Results 

3.1  BMSC Osteogenic Differentiation, Osteoblastogenesis, and ECM Mineralization   

The growth, osteogenic differentiation, and mineralization of Matrigel-embedded 

HBMSCs were kinetically monitored by light microscopy using an Incucyte (Essen Bioscience).  

The increased opacity of mineralization zones obscures the cellularity of the bone-like fragment.  

The area of each mineralization zones increases until they combine over a 34-day period forming 

the complete 3D Normal Bone-like Fragment (3D-NBF) (Figure 5A).  The ossified product of 

the osteogenically-differentiated BMSCs was visible to the unaided eye after 28 days in culture 

(Figure 5B).  The Incucyte’s measurement tool was used to assess 3D-NBF average diameter, 

2.43 mm, and diameter standard deviation, 13.8%. 

A 
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B    C 

 

Figure 5.  Growth, Differentiation, and Mineralization of BMSCs. Matrigel-embedded 

human BMSCs grown in the presence of osteogenic differentiation media (OsteoMax-XFTM) 

become functional osteoclasts that secrete osteoid and HA that forms a mineralized bone micro-

fragment of approximately 2.45 mm in diameter.  

3.2 3D-NBF Characterization 

3.21  Alkaline Phosphatase Staining 

Osteogenic differentiation of the human BMSCs into osteoblasts was monitored every 

seven days by alkaline phosphatase (AP) staining (Figure 6A).  Skeletal AP is anchored to 

inositol-phosphate on the cell membrane of functional osteoblasts and is a key osteogenic 

biomarker.   AP catalyzes BCIP (5-Bromo-4-chloro-3-indolyl phosphate) and further reacts 

with NBT (nitro blue tetrazolium), producing a dark insoluble formazon precipitate, diformazan 

[57]. The alkaline phosphatase staining of the 3D-NBFs produced by osteogenically-

differentiated BMSCs (BMSC+) were compared to control cell lines maintained in the presence 

of OsteoMax-XF including, cell-free Matrigel (M+), HEK-293 cells (HEK293+), and Caco2 

cells (Caco2+).  AP staining was also performed on BMSCs grown in stem cell media to serve as 

a negative control (BMSC-).  The diformazan was localized in the mineralized regions of the 3D-

NBFs and in the cytoplasm of Caco2 cells [58].  The AP staining intensity increased in the 3D-

NBFs over time until it reached maximum opacity at day 28 and beyond (Figure 6B). 
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Figure 6.  Alkaline Phosphatase Staining of Human BMSC-Derived Osteoblasts.  A.  

Alkaline Phosphatase Staining of hBMSCs grown in StemProTM (non-osteogenic) and 

OsteoMaxXFTM (osteogenic differentiation) media.  Human BMSCs grown in OsteoMax XF for 

seven days generate a dark blue-purple when exposed to NBT/BCIP, a substrate of alkaline 

phosphatase.  B.  BMSC+ wells show a dark precipitate in the mineralized region of the 3D-

NBFs.  Caco2 cells have reported AP activity and show cell-based staining pattern while other 

controls appear negative.   

3.22  Alizarin Red S Staining 

Osteogenic differentiation of human BMSCs into osteoblasts was characterized for 

calcium deposition through staining with Alizarin Red S (ARS), an anthraquinone dye that binds 
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calcium [59].  In aqueous solution, ARS and Ca2+ ions precipitate to form brick-red deposits 

(Figure 7A).   ARS accumulated in the mineralized 3D-NBFs and appeared as deep red deposits 

in the bone-like tissue, while little to no staining was observed in any of the control wells (Figure 

7B).  Like AP, 3D-NBF ARS staining increased in intensity as the mineralization process 

progressed demonstrating peak calcium deposition at Day 28 and beyond. 

A 

     

B 

 

Figure 7.  Alizarin Red S Staining of Human BMSC-Derived Osteoblasts.  A. The number of 

calcium deposits increase with prolonged culture in osteogenic differentiation medium.  By Day 

21 deep-red deposits permeate the mineralized bone micro-fragment.  B.  While little to no 

staining was observed in the M+, BMSC-, and control cell lines, dark red staining was present in 

the BMSC+ sample wells, especially in the 3D-NBFs.     
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3.23 Osteogenic Gene Expression of BMSCs, Primary OBs, and 3D-NBFs 

RNA isolated from BMSCs, primary human osteoblasts (PHO) and 3D-NBFs was 

screened for transcript expression of over ninety osteogenic markers.  Genes associated with 

bone extracellular bone matrix (collagen, SPARC, and MMP2) and alkaline phosphatase (ALPL) 

were comparable between PHO and the normal in vitro 3D bone micro-fragments and 

downregulated in the MBD model (Figure 8).  Gene expression was normalized with the 

housekeeper values (GAPDH) for each sample and relative quantification (RQ) was determined 

(Figure 8).  Type 1 collagen transcript levels greatly increased over 1,000-fold in 3D-NBF 

samples over the original BMSCs.   The same trend appeared in collagen type 1 alpha 2 and 

collagen type 3 alpha 1 chain transcripts.  Osteonectin, a calcium-binding glycoprotein secreted 

by OBs during bone formation [60] was also upregulated greater than 1,000-fold in the 3D-NBF 

and PHO samples.  ANOVA analysis of these highly expressed osteoblastic genes generated a p 

value of 0.0125.  Osteopontin, an osteoclast anchoring protein secreted by OBs, was highest in 

the OC-containing 3D-NBF culture (>150-fold higher than the BMSC and 14-fold higher than 

primary OBs).  Another osteogenic marker, osteocalcin, a hormone secreted by osteoblasts that 

regulates metabolic activity [15], was approximately 10-fold higher in the 3D-NBF samples and 

primary OB samples when compared to levels found in BMSCs (Figure 8).  ANOVA analysis of 

these moderate/lowly expressed osteoblastic genes generated a p value of 0.2017. 
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Figure 8. Osteogenic Gene Expression Profiling of BMSCs, PHOs, and 3D-NBFs.  Several 

osteogenic genes were upregulated in the 3D in vitro bone model (3D-NBF samples) like 

collagen type 1, osteonectin, alkaline phosphatase, bone sialoprotein, osteocalcin and 

osteopontin.  Normalized gene expression relative quantification (RQ) values show that gene 

expression in the 3D-NBFs is similar to that observed in PHOs.  

3.24 Actin Distribution/Phalloidin Staining and Multinucleation 

Since human BMSCs, osteoblasts, and osteoclasts differ morphologically, a Phalloidin-

AlexaFluor488 (green) stain was used to visualize the actin distribution in each cell type in the 

model of MBD (Figure 9).  DAPI, a nuclear counterstain, was used to identify multinucleated 

cells.  

Figure 9.  Microscopic Morphological Identification of Osteoclasts. Actin distribution of the 

3D-NBF samples depicts large multinucleated with an actin rich periphery resembling the 

osteoclastic podosomal belt.  In contrast, actin distribution in BMSCs and osteoblasts appears 

linear and somewhat filamentous throughout the cell’s cytoplasm.  Monocytic fusion leads to 

formation of the osteoclast with a roughly five times larger diameter than the osteoblast.   
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3.25 Fourier Transfer Infrared Spectroscopy and Micro-CT Analysis of 3D-NBFs 

 The 3D-NBF samples were analyzed via Fourier Transfer Infrared Spectroscopy (FTIR) 

to monitor HA and collagen composition.  FTIR is a widely accepted manner of a assessing bone 

composition [61, 62].  The 3D-NBF FTIR spectrum contains corresponding peaks for HA, all 

valences, and collagen (Figure 10A).  HA valence peaks at approximately 550 cm-1 and 1,100  

cm-1 matched those found in HA powder (Figure 10B).   

 A diagram depicting the slide containing the 3D-NBF in Matrigel (Figure 10C) shows 

how the samples were analyzed via micro computed tomography (micro-CT), an imaging 

technique that utilizes x-rays to create a high resolution image of 3D objects.  Micro-CT 

analysis, a technique used to study bone mineralization [63], of the 3D-NBF revealed a uniform 

pattern of mineralization throughout the sample (Figure 10D). 

A                B 
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Figure 10.  FTIR and Micro-CT Analysis of 3D-NBFs.  A.  The FTIR spectrum of bone-like 

fragments derived from the BMSC+ culture contains the prominent and expected HA-associated 

peaks at roughly 500 and 1050 cm-1, comparable to that of HA powder and the collagen-related 

amide peaks at roughly 1550 and 1650 cm-1 found in mammalian bone (not shown).  C. Lateral 

diagram showing the location of the sample with respect to the surface of the slide.  D.  Micro-

CT analysis of a 3D-NBF with a relatively uniform mineralization pattern across the entire 

length of the sample. 

 

3.26  Hydroxyapatite Content of 3D-NBFs and Control Samples 

Lonza’s OsteoImage assay contains a proprietary agent that binds directly to HA and can 

be analyzed quantitatively by using a plate reader set to 492nm excitation and 520nm emission 

wavelengths (Figure 11A) or qualitatively through fluorescent microscopy (Figure 11B).   The 

3D-NBFs formed by the osteogenically-differentiated BMSCs contained increasing amount of 

HA over time (Figure 11).  Statistical analysis (ANOVA) of the RFU values resulting from different 

culture conditions generated a p value of 0.0109.  The staining was localized in HA-rich areas of 3D-

NBFs and peripheral OBs resulting in a bright green staining pattern with little to no background staining 

in the rest of the well (Figure 11B).  While some background HA staining was detected in the M+ wells it 

did not resemble the mineralized 3D-NBF and little to no fluorescence was detected in other control wells 

(Figure 11B).    
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Figure 11.  Hydroxyapatite Content of 3D-NBFs and Control Samples.  A.  Weekly RFU 

values for BMSC+ (3D-NBF) and controls Day 7 through Day 28.  Fluorescent 

photomicrographs of the BMSC+ (3D-NBF) and control wells at 14, 21, and 28 days in culture.  

3.3  Characterization of 3D-MBD Model 

3.31 Osteogenic Gene Expression Profiling of 3D-NBF and 3D-MBD Samples 

 3D-NBF and 3D-MBD RNA samples were evaluated for osteogenic gene transcript 

levels via RT-PCR.  Decreased expression of  alkaline phosphatase (-3.00-fold, p=0.0214), 

osteonectin (-16.22-fold, p<0.001)), and type 1 collagen (-15.09-fold, p=0.0078) was observed in 
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the 3D-NBF samples (Figure 12) confirming the well-documented  suppressive effect of MM on 

bone formation [64, 65].  BMP6, the only bone morphogenetic protein secreted by myeloma 

cells, expression increased (30-fold, p=0.0014).  Several publications reported high levels of 

BMP6 in MM patient BM aspirates and revealed that its antiproliferative effect on myeloma cells 

is associated with improved MM prognosis [66, 67, 68].  

 

Figure 12.  Osteogenic Gene Expression in 3D-NBF and 3D-MBD Samples.  Osteogenic 

gene expression was determined for 3D-NBF and 3D-MBD samples (n=3).  Transcript levels 

were normalized to GAPDH and Relative Quantification (RQ) values were determined for each 

sample using 2-ΔΔCt.  Fold change was determined for both upregulated and downregulated genes 

in MM-induced MBD samples with respect to those obtained from the 3D normal bone 

fragments.  A statistical analysis (t-test) was performed and p values for reported target genes 

were <0.05 (six of them were <0.01). 
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3.32 Quantified HA and CTX-1 Content in Normal and MBD Bone Micro-fragments. 

A model of human MBD was created by co-culturing the normal in vitro bone model 

with four different MM-derived plasmacytomas (MM1S, RPMI-8226, H929, and U266) 

respectively at four fixed cell densities.  After twelve days of exposure the MBD model was 

monitored for changes in bone mineralization (HA content) and resorption (CTX-1).  HA content 

was quantified through Lonza’s OsteoImage Assay (Figure 13) and liberated CTX-1 was 

measured by Chondrex’s ELISA assay kit (Figure 14).  HA content dropped in 3D-NBF samples 

cultured in the presence of MM.1S, RPMI 8226, H929, and U266 cells for 12 days with 

respective decreases of 1.23 to 1.39-fold, 2.21 to 4.05-fold, 2.51 to 5-fold, and 1.89 to 4.24-fold 

in total HA content (Figure 13).  A statistical analysis (ANOVA) was performed on the MM cell 

concentration-dependent decrease in HA (p<0.001).  The same MM-subjected culture conditions 

liberated CTX-1 in the media of each 3D-NBF sample with respect to MM cell line present in 

the culture (MM.1S: 2.25 to 87.74-fold, RPMI 8226: 1.95 to 50-fold, H929: 2.2 to 83.31-fold, 

and U266: 2.03 to 50.44, Figure 14).  A statistical analysis (ANOVA) revealed significant MM 

cell concentration-mediated increases in CTX-1 (p=0.0068).     
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Figure 13.  HA Content of Human 3D-NBF Exposed to MM Cells.  A plasmacytoma cell 

concentration-dependent decrease in HA content was observed in all MM-exposed bone micro-

fragments after twelve days (n=3).  Unexposed HA content remained consistent (n=3).  

 

 

Figure 14.  Liberated CTX-1 Levels in Human 3D-NBFs Exposed to MM.  Increased CTX-1 

values were observed in human bone micro-fragments exposed to higher cell numbers of human 

plasmacytoma cell lines (n=3).  Media derived from normal unexposed bone micro-fragments 

contained trace amounts of CTX-1 (n=3).  

 

3.33  Micro-CT Analysis of 3D-MBD Samples 

 RPMI 8226-induced 3D-MBD bone-like fragments were analyzed via micro-CT and 

compared to images generated from 3D-NBF samples.  Large voids in the mineralized regions of 

the tissue appeared in the 3D-MBD sample (Figure 15A).  This loss of mineralized tissue could 

be due to processing, but the 3D-NBF and 3D-MBD samples were fixed, washed, and collected 

simultaneously with the same protocol.  Although the MM-induced loss of HA content and 

elevated CTX-1 found in these samples (Figures 13 and 14) could be responsible for diminished 

structural integrity, additional supporting data, like bone volume and surface density, were not 

measured.  Diagrams of the 3D-NBF and 3D-MBD models were created to assist in visualizing 

changes in mineralization zones within the normal and diseased samples (Figure 15B). 
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B 

 

Figure 15.  Micro-CT Analysis of 3D-MBD Samples.  A.  Micro-CT generated image of the 

RPMI 8226-exposed 3D-NBF sample shows voids in the bone-like tissue.  B.  A diagram of the 

3D-NBF and 3D-MBD models.     

3.34 CTX-1 Analysis of 3D-NBF and RPMI-8226-Induced 3D-MBD  

 CTX-1 levels were compared in the complete bone medium, 3D-NBF, and 3D-MBD 

models.    3D-MBD samples were cultured in the presence of 20,000 RPMI 8226 cells for twelve 

days.  An approximately 10-fold increase in CTX-1 was detected in the 3D-MBD media samples 

compared to those collected from the 3D-NBF model (Figure 16A).  Average free CTX-1 levels 

were: complete medium: 9.34 +/-0.46, normal 3D bone (3D-NBD): 57.91 +/- 18.23, and RPMI 

8226-induced MBD:  598.04 +/- 83.41.  Statistical analysis (ANOVA) of the CTX-1 values in 

each sample group generated a p-value <0.001 (Figure 16A).  Light microscopy pictures 

captured morphological differences in the 3D bone-like samples; the 3D-NBFs appeared quite 

opaque while the 3D-MBD samples contained regions of increased translucence (Figures 16B 

and 16C).     
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B       C 

 

Figure 16.  CTX-1 Analysis of 3D-NBF and RPMI 8226-Induced 3D-MBD Samples.   

A. CTX-1 content of the complete medium, normal 3D bone fragments (3D-NBF), and 3D-NBF 

samples cultured in the presence of RPMI-8226 for twelve days was measured (3D-MBD).  B.  

Brightfield microscopic image of a 3D-NBD.  C.  Brightfield microscopic image of  a 3D-MBD. 

 

3.4 Assessment of Therapeutic Intervention on 3D-MBD Samples 

 RPMI 8226-induced 3D-NBF samples were treated with several different therapeutic 

agents including: an immunomodulatory drug (lenalidomide), a bisphosphonate (alendronate), 

and two separate biotherapeutic agents/monoclonal antibodies, anti-Dkk1 and anti-sclerostin.  
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HA was measured on treated samples, normal 3D-NBF and untreated 3D-MBD controls (Figure 

17).  The RPMI 8226-induced myeloma bone disease bone-like fragments treated with individual 

therapeutic agents had sizeable increases in detectable HA present in the OsteoImageTM assay: 

alendronate (2.6-fold, p=0.13), lenalidomide (3.4 fold, p=0.007), anti-sclerostin (3.7,  p=0.004), 

anti-DKK1 (7-fold, p=0.002).  Simultaneous administration of all aforementioned treatments 

lead to a roughly 5-fold increase (p=0.002) in HA while all of the agents minus alendronate lead 

to a 6-fold increase (p=0.016) in HA content (Figure 17A).  Corresponding images for 3D-MBD 

samples treated with the all of the therapeutic agents reveals the relative fluorescence as 

indicated by the OsteoImageTM assays fluorescently-labeled HA-binding reagent (Figure 17B).  

Nonfluorescent regions of 3D-MBD samples treated with lower concentrations of the therapeutic 

agents were identified and matched those observed in previous experiments.   

A 

 

B 
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Figure 17.  The Effect of Different Therapeutic Agents on 3D-MBD HA Content.  A.  Dose-

dependent increases in HA content were observed in treated RPMI 8226-induced 3D-MBD 

bone-like fragments.  The submicromolar EC50s demonstrate the potent nature of the 

combinatorial treatment to restore bone mineralization (n=3).  B.  Fluorescent microscopy 

reveals HA content in 3D-MBD samples treated with the battery of therapeutic agents at 0.1, 1, 

and 10 μM respectively. 

 CTX-1 content was measured in the media samples collected from the treated 3D-MBD, 

untreated 3D-MBD and 3D-NBF control wells (Figure 18).  Dose-dependent decreases in CTX-1 

were observed in 3D-MBD samples with individual therapeutic agents for twelve days, with 

maximum reductions detected at the 10 μM concentrations: alendronate (21-fold, p=0.003), 

lenalidomide (7-fold, p=0.003), anti-sclerostin (23-fold, p=0.003), anti-DKK1 (21-fold, 

p=0.003).  Combining the anti-MM drug and bone-modifying agents proved even more effective 

at inhibiting bone resorption.  Sizeable decreases in CTX-1 present in the media after twelve 

days of treatment were noted for all of the agents (35-fold, p=0.003) and all of the agents minus 

alendronate (24-fold, p=0.003) (Figure 12C).  Statistical analysis (t-test) of the treated 3D-MBD 

CTX-1 generated a p-value of 0.002.  Nonlinear regression analysis of the CTX-1 ELISA data 

derived from the combined therapies generated left-shifted, more potent, IC50 values than 

individual treatments. 

    

Figure 18.  The Effect of Different Therapeutic Agents on 3D-MBD CTX-1 Levels.  A dose-

dependent decrease in liberated CTX-1 was detected in supernatants from MBD bone micro-
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fragments exposed to each respective plasmacytoma (n=3).  The combinatorial treatment had no 

effect on the CTX-1 levels in the supernatant of untreated/normal in vitro bone.   
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Conclusion 

 A three-dimensional normal bone-like fragment was created through the osteogenic 

differentiation of human BMSCs into osteoblasts capable of mineralizing the osteoid-like ECM 

and producing an ossified product.  A thorough analysis of the 3D-NBFs revealed high levels of 

alkaline phosphatase activity, large calcium deposits, increased expression osteogenic transcripts, 

enriched HA content with the requisite corresponding HA and collagen FTIR peaks, and 

uniformly dense mineralization patterns.  

 Bone formation in the 3D-NBF system resembles intramembranous ossification.  

Osteoblasts deposit calcium into a collagen-rich ECM, similar in composition to the endosteal 

niche, and form a mineralized bone fragment.  The addition and subsequent osteoclastogenic 

induction of BMMs create a functional and somewhat homeostatic replica of the bone 

remodeling process.  It is a chondrocyte-free system that generates normal compact spongy 

bone-like fragments, similar to trabecular bone, developed directly from sheets of MatrigelTM-

embedded BMSC-derived connective tissue.  Since MatrigelTM is a gelatinous protein mixture 

secreted by Engelbreth-Holm-Swarm (EHS) mouse sarcoma, other more bone-like ECMs should 

be explored to enhance ossification and mineralization.  These could include direct bone-derived 

biomatrices and inert synthetic hydrogels enriched with factors that promote osteogenic 

differentiation.  

 Others have developed, deployed, and published data from BMSC-derived in vitro bone 

models [69, 70], but they were designed for use in bone graft implantation and did not include 

the resorptive component of bone.  Jaquiéry et al. noted the osteogenic potential of BMSCs, 

highlighting increased osteogenic gene expression, enhanced AP activity and superior calcium 

deposition, over jaw periosteal cells (JPC) as potential in vitro sources of bone formation.  Some 
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recently published review articles recognize the potential of in vitro models of bone remodeling, 

but a functional semi-homeostatic 3D model of human skeletal remodeling had yet to be 

established [71, 72].  Lopa et al. were able to create a vascularized 3D model of bone remodeling 

replete with OB and OC precursors and Human Umbilical Vein Endothelial Cells (HUVEC), but 

it was created to study bone cell-endothelial crosstalk and lacked functional longevity because 

OB and OC precursors were added and differentiated simultaneously [73].  The model described 

in this study was able to incorporate and maintain osteoclastic resorption for several weeks by 

adding BMM as osteoclast precursors post 3D-NBF formation, addressing the relatively short-

lived nature of primary osteoclasts [51].   

 Introduction and subsequent osteoclastogenic differentiation of BMMs elicited monocytic 

fusion and formation of functional osteoclasts.  Microscopic analysis revealed several 

multinucleated cells with an actin-rich podosomal belt, common morphological attributes of 

osteoclasts.  The resorptive capability of this 3D in vitro bone model was examined through 

changes in free CTX-1 in the media post introduction of MM cells known to promote 

osteoclastogenesis and osteoclastic resorption.       

 Thorough characterization of this replica of the human bone remodeling process 

confirmed robust osteogenic BMSC differentiation into functional bone-forming osteoblasts and 

the bone-like attributes of their mineralized product, as well as osteogenic BMM differentiation 

into functional bone-resorbing osteoclasts and liberation of collagen C-terminal telopeptide.  The 

Media from the 3D-NBFs had a five to six-fold increase in CTX-1 content over the cell-free 

complete differentiation medium control, but the introduction of a myeloma cells to the 3D-NBF 

samples would cause a roughly ten-fold increase in CTX-1 release over the 3D-NBF values.  
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 A three-dimensional microphysiological model of human myeloma disease was created 

through the incorporation of RPMI 8226, a human myeloma-derived cell line, to the previously 

formed 3D-NBFs.  The introduction of the MM cell line disrupted the normal bone remodeling 

process by simultaneously suppressing bone formation, as evidenced by the loss in HA content 

and intensified resorption, demonstrated by a substantial increase in free CTX-1.  This result 

coincided with decreased integrity observed via micro-CT analysis of 3D-MBD fragments as 

compared to the 3D-NBFs.   

While others created models that simulate the interaction between MM and the bone 

marrow stroma and its impact on bone formation, the complete 3D model of simultaneous 

osteoblastic bone formation and osteoclastic resorption had yet to be created and used to assess 

the effect of MM therapeutic intervention on MBD [74, 75].  Belloni et al. monitored the effects 

of MM therapeutic agents on MM-stromal interactions, but the in vitro bone model used in the 

study lacked functional osteoclasts [75].   

Murine models of myeloma bone disease were developed at the turn of the 21st century 

[76] and improved models were recently published [77].  While these in vivo systems are helpful 

in assessing drug efficacy and in investigating toxicological liabilities, the interspecies 

discordance is of concern.  The use of humanized mouse model contains a physiological 

integration of human and mouse properties into a single functional bone tissue while maintain 

species-specific structural differences [78].  These murine systems do not annul the need for 

functional human systems of skeletal remodeling especially when studying therapeutic 

intervention of myeloma bone disease and both should be used synergistically to conduct 

preclinical assessments of potential MBD treatments.     
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The MM-compromised bone-like fragments generated in this study were used to evaluate 

the efficacy of both individual and combinatorial therapies on restoring HA and CTX-1 to levels 

observed prior to myeloma cell line addition.  Combinatorial treatment with an 

immunomodulatory drug and three bone modifying agents, including alendronate, anti-sclerostin, 

and anti-DKK1 proved most effective at enhancing bone formation while suppressing resorption.  

The treated 3D-MBD fragments displayed higher HA levels and lower CTX-l levels than their 

untreated counterparts, highlighting the restorative nature of the treatment. The effectiveness of 

the therapy appeared to be dose-dependent where higher concentrations of drugs correlated with 

higher HA composition and inversely-correlated with lower CTX-1 found in the media.  

Fluorescent microscopy of the fluorescently-labeled HA binding protein in the treated and 

untreated 3D-MBDs confirmed the robust nature of HA content in treated samples and revealed 

mixed patterns of HA content throughout the untreated samples. 

Additional micro-CT analyses are required to fully establish the bone volume and surface 

density of 3D-NBF and 3D-MBD samples.  They would also help identify osteolytic lesion in the 

3D-MBD bone-like fragments, assess the loss of structural integrity in the myeloma bone disease 

model with respect to the normal 3D-NBF, and evaluate the restorative nature of therapeutic 

agents on the 3D-MBDs post treatment.  Histological analysis of fixed sections derived from 

these samples could also have an added value in assessing the impact of the MM on bone 

integrity. 

While IMiDs, like lenalidomide, are effective at eliciting proteasomal degradation of 

essential transcription factors and suppress MM proliferation and survival, their role in 

reestablishing normal bone remodeling is unclear.  Coupling standard of care MM treatments 

with osteoclast apoptosis inducing bisphosphonates, like alendronate, and other bone modifying 
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agents is quite encouraging.  Future evaluations should include other standard of care treatments 

like the proteasome inhibitor, bortezomib and other inhibitors of bone resorption, like the 

promising anti-RANKL antibody, denosumab.  Effective therapeutic interventions should 

address the various molecular signaling mechanisms by which MM wreaks havoc on the bone 

marrow niche and restore the unencumbered osteogenic potential of BMSCs while promoting 

balanced BMM osteoclastogenesis and bone metabolism (Figure 2). 

This model of MM-disrupted skeletal remodeling also highlights the importance of 

targeting WNT inhibitors, like sclerostin and Dkk1, when treating MBD [79, 80].  Combinatorial 

treatment regimens are widely used in treating cancer, but incorporating novel bone modifying 

agents in relapsed refractory multiple myeloma could have a restorative effect on bone integrity 

and reveal the role of canonical WNT signaling in IMiD-resistance [27, 81].  This MBD model is 

capable of exploring the role of WNT signaling in MM-BM stromal interactions, determining 

potential treatments that suppress MM growth and survival while determining the therapeutic 

effect on bone health.  Amgen’s romosozumab is currently approved for use in osteoporosis, as 

is their anti-RANKL antibody, denosumab.  Studies monitoring clinical efficacy of these bone 

modifying agents to treat MM have recently been published [82], combinatorial treatment 

regimens have yet to reach their full potential [83].   

While no in vitro model of human bone physiology can precisely simulate the complex 

bone metabolism microenvironment, this 3D microphysiological model of MM-induced 

disrupted skeletal remodeling may serve as a biologically functional surrogate.  It’s amenable to 

high throughput screening of novel pharmacological bone-targeting agents while avoiding 

potential toxicological liabilities and interspecies discordance observed in in vivo studies of 

mammalian skeletal remodeling in lower species.  The thorough characterization performed in 
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this thesis suggests that this replica of human osteogenic function should be translatable, but 

further studies are required to validate the untapped potential of this system.      
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Appendix 

Supplemental Materials 

3D Normal Bone Model Cells 

Mesenchymal Stem Cells (Rooster Bio, cat# MSC-030) 

Human Osteoclast Precursors (Lonza, cat# 2T-110)  

Bone Marrow Stromal Cell/Mesenchymal Stem Cell Medium 

hMSC High Performance Media Kit XF (Rooster Bio, cat# KT-016) 

Osteoblast Differentiation Medium 

OsteoMax XF (EMD Millipore, cat# SCM121) 

Osteoclast Differentiation Medium 

Mesenchymal Stem Cell Growth Medium (MSCGM) (Lonza, cat# PT-3001) 

RANKL 66.66 ng/ml (Sigma-Aldrich, cat# GF091) 

M-CSF 33.33 ng/ml (Sigma-Aldrich, cat# SRP6165-10UG) 

3D Human Bone Model Medium 

1:1 Mix of OsteoMax XF and Osteoclast medias 

Supplemental Reagents 

Growth Factor-Reduced Matrigel (Corning, cat# 354230) 

Human Multiple Myeloma-Derived Cell Lines: 

• NCI-H929 (ATCC CRL-9068) human plasmacytoma 

• RPMI-8226 (ATCC CRM-CCL-155) human plasmacytoma 

• MM.1S (ATCC CRL-2974) human myeloma 

• U266 (ATCC TIB-196) human plasmacytoma 

MM Medium 

RPMI-1640 (Gibco, cat# 11875), Fetal Bovine Serum (Gibco, cat# 10082) 

MBD Complete Medium 
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OsteoMaxXF: Osteoclast Differentiation Medium: MM Medium (RPMI-1640+ 10%FBS)  

Alkaline Phosphatase Staining Reagents 

NBT/BCIP Ready-to-Use Tablets Protocol & Troubleshooting 

Product No. 11697471001 

Protocol  

Recommended counterstains for non-radioactive in situ hybridization in combination with Anti-

DIG-AP detection/NBT/BCIP: 

 

It is a well-known phenomenon that NBT/BCIP is not compatible with classical counterstains. 

NBT/BCIP signals should not be mounted with xylene-containing mounting media, such as 

DPX, because these could lead to crystal formations of the color precipitates. Unfortunately, 

classical counterstains, such as eosin require xylene-containing mounting media. 

 

The following mounting reagents are specifically available for mounting sections with 

NBT/BCIP signals: Crystalmount from Biomedia or Vectamount or Immunomount from Vector 

Laboratories. The same companies also offer organic counterstains which are compatible with 

these mounting media (e.g.,Vector Methyl Green, Vector Nuclear Fast Red). 

 

The results of combining a particular counterstain with any of the mounting media primarily 

depends on the type of tissue used for NBT/BCIP color detection. 

 

Staining adjacent slides with or, without NBT/BCIP detection with a typical counterstain and to 

mount the slides with the classical xylene-containing mounting medium. This allows the direct 

comparison of stained tissue with or, without signal. 

 

Customer Recommended Protocol* for the Preparation of a mounting medium: 

 

Glycerol gelatin: 

• 100 ml of 0.2 M phosphate buffer pH 7; 

• Na azide 200 mg; 

• gelatin 15 g, stir until dissolved; 

• glycerol 100 ml. 

Keep at +37 °C, add a drop to the slide and coverslip. After hardening of the mounting media, 

the signal is said to last for several years without fading of the NBT/BCIP precipitate. 

 

 

https://www.sigmaaldrich.com/ProductLookup.html?ProdNo=11697471001&Brand=ROCHE
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OsteoImage Assay Protocol Details  

. The OsteoImage™ Assay requires a fluorescence microscope or plate reader capable of 

excitation/emission at approximately 492nm and 520nm, respectively.  

. Black-walled plates are recommended for assays using OsteoImage™; however, clear 

plates can be used.  

. OsteoImage™ performs equally well on cells fixed with either cross-linking or 

denaturing fixatives (e.g. formaldehyde or alcohols).  

 

Cell Culture Notes  

. Different osteoblast cell types require varying methods and lengths of time for 

differentiation and for mineralization.  

. If using a related Lonza cell product, refer to the Instructions for Use specific for that cell 

type for culture suggestions.  

 

Preparation of reagents:  

1. Calculate the total volume of OsteoImage™ Wash Buffer required for 5 wash steps (see Table 

1 for suggested volumes per well). Dilute the 10x stock Wash Buffer 1:10 in deionized water 

at the final volume calculated (alternatively, the entire stock can be diluted for a 500 ml total 

volume and stored at room temperature or 4oC for future use).  

2. Calculate the total volume of OsteoImage™ Staining Reagent needed based on number of 

wells and well size (see Table 1). Dilute Staining Reagent 1:100 in Staining Reagent Dilution 

Buffer to the final calculated volume. Mix well and keep protected from light  

All trademarks herein are marks of Lonza Group or its subsidiaries.  

Protocol for Staining & Assay:  

1. When cells are ready to be evaluated for mineralization, remove culture plate from incubator 

and allow cooling to room temperature.  

2. Remove media and wash once with PBS.  

3. Fix cells using appropriate fixative method (e.g. Incubation with ethanol for 20 minutes).  

4. After fixation, rinse 1-2 times with diluted (1X) Wash Buffer.  

5. Add appropriate amount (See Table 1) of diluted Staining Reagent to each well.  

6. Incubate at room temperature, protected from the light, for 30 minutes.  

7. After incubation step, remove the Staining Reagent from wells and discard. Wash 3 times 

with the appropriate volume (see Table 1) of diluted Wash Buffer, leaving wash buffer in the 

wells for ~5 minutes per wash.  

8. After final wash, add Wash Buffer to each well for microscope viewing or plate reader 

analysis according to volumes in Table 1.  

9. View under appropriate excitation and emission settings on fluorescence microscope (e.g. 

Fluorescein filter set).  

10. If performing quantitative assay using fluorescent plate reader, choose appropriate 

excitation/emission wavelengths (492/520) and plate layout before reading plate.  

 

Table 1 Wells/  

Plate  

Volume of 

Diluted Staining 

Reagent/well  

Volume of 

Diluted Wash 

Buffer/well  

6-well  1.0ml  2.0ml  

12-well  0.75ml  1.5ml  
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24-well  0.5ml  1.0ml  

48-well  0.2ml  0.4ml  

96-well  0.1ml  0.2ml  

 

Type I Collagen C-telopeptide, CTX-I, Assay Kit (Chondrex Inc, Catalog # 6033) 

CTX-I Assay Outline 
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